

THE NEW YORK BLOWER COMPANY 7660 Quincy Street Willowbrook, IL 60527-5530

Visit us on the Web: http://www.nyb.com Phone: (800) 208-7918 Email: nyb@nyb.com

SPECIAL-DIAMETER AND SPECIAL-WIDTH SERIES 20, 30 AND 45 GI FANS

When selecting a direct-drive fan, the required performance may be different from that produced by a fan with a standard wheel at the standard motor RPM. In order to broaden the available performance range, special-diameter and special-width wheels are available: **GI Fans with DH Wheels** - Sizes 194 through 854 are available with special wheel diameter.

GI Fans with LS and RIM Wheels - Sizes 194 through 854 are available with special wheel width and diameter.

SPECIAL-DIAMETER GI FANS with DH WHEELS... broaden the available performance range by holding CFM constant and varying SP, to 65% of full-diameter SP, at a given motor speed. Special diameter is limited to 88% (12% reduction).

Fan performance with special-diameter DH wheels can	Stone	Example:
be determined as follows:	Steps	A fan is required to handle 26,092 CFM @ 22" SP.
Select a fan based on the desired CFM and a static		A size 574 Series 30 GI Fans with DH wheel gives
pressure equal to or greater than the desired static		26,092 CFM, 26" SP, 152 BHP at 1175 RPM. OV is
pressure at the required motor speed. Note the full-	1	4400 FPM.
diameter static pressure, brake horsepower and outlet		
velocity (OV).		
Based on the outlet velocity shown for the desired CFM,	0	At 4400 FPM, the VP is 1.21".
determine the velocity pressure from Chart 1.	2	
Divide the velocity pressure from Step 2 by the desired	2	VP divided by desired SP = 1.21/22 = .055 VP/SP factor.
static pressure to determine the VP/SP factor.	3	
Divide the desired static pressure by the full-diameter	1	Desired SP divided by full-diameter
static pressure determined in Step 1.	4	SP: 22/26 = 85% of full-diameter SP.
Using Chart 2, read horizontally from the percent of full-		Reading horizontally from 85% of full-diameter SP to the
diameter static pressure as calculated in Step 4 to the		.055 VP/SP curve and reading downward to the
point of intersection with the curve representing the		percent of full diameter, the required wheel diameter is
VP/SP factor determined in Step 3. Read downward to	5	93.5%. Reading horizontally from the point of intersection
determine the percent of full diameter. From the point of	5	with the BHP curve, the BHP is 85% of the full-diameter
intersection of the vertical drop and the BHP curve, read		BHP.
horizontally to the right to determine the percent of full-		
diameter BHP.		
The desired wheel diameter is expressed in percent of		The desired wheel diameter is 93.5% of the full diameter.
full diameter. The required BHP is calculated by multiply-	6	The correct BHP for the special-diameter wheel is 85%
ing the full-diameter BHP by the percentage determined	U U	of the full-diameter BHP or 0.85 x 152 = 129 BHP.
in Step 5.		

The 574 Series 30 GI Fans with 93.5% diameter DH wheel is selected for 26,092 CFM, 22" SP, 1175 RPM, 129 BHP.

CHART 1 Velocity Pressures vs. Outlet Velocities Based on Standard Air

Velocity in FPM	Velocity Pressure in Inches Water	Velocity in FPM	Velocity Pressure in Inches Water
1000	.062	3600	.808
1200	.090	3800	.900
1400	.122	4000	1.00
1600	.160	4200	1.10
1800	.202	4400	1.21
2000	.249	4800	1.44
2200	.302	5200	1.69
2400	.359	5600	1.96
2600	.422	6000	2.24
2800	.489	6400	2.55
3000	.561	6800	2.88
3200	.638	7200	3.23
3400	.721	7600	3.60

SPECIAL-DIAMETER CONSTRUCTION FOR GI FANS WITH LS AND RIM WHEELS

Special-diameter LS and RIM wheels in direct-drive fans offer the advantage of maintaining a constant CFM and varying SP at a given motor speed.

Fan performance with special-diameter LS and RIM wheels can be determined as follows:

- 1. Select a fan that will deliver the desired performance at a belted-fan speed that is within 90% to 105% of the desired direct-drive speed.
- 2. Standard wheel diameter x Belted RPM = New Wheel Diameter Direct Drive RPM

Direct Drive RPM

- 3. Brake horsepower will be the same as selected in Step 1.
- Note: If the new wheel diameter is larger than standard and the direct-drive speed is higher than 95% of the maximum safe speed shown for the standard wheel, check the application with the Marketing Department.

Larger-than-standard-diameter wheels may require split-housing construction to allow wheel installation and removal.

EXAMPLE 1 - Smaller-Than-Standard-Diameter Wheel

Afan is required to handle 5910 CFM at 16" SPat 70°F.

- 1. A334 Series 20 GI Fan with LS wheel deliveries 5910 CFM at 16" SPat 70°F., 1644 RPM and 25.2 BHP (1644 RPM is 92.9% of a 1770 RPM motor).
- 2. 33" standard wheel diameter x 1644 = 30.7" diameter.

1770

3. Select a 334 Arrangement 8 Series 20 GI Fan with special 30.7" diameter LS wheel direct connected to a 1770 RPM motor to deliver 5910 CFM at 16" SP, 25.2 BHP.

EXAMPLE 2 - Larger-Than-Standard-Diameter Wheel

A fan is required to handle 29,650 CFM at 26" SP at 70°F.

- 1. A574 Series 30 GI Fan with RIM wheel delivers 29,650 CFM at 26" SPat 70°F., 1203 RPM, and 189 BHP (1203) RPM is 102.4% of an 1175 RPM motor).
- 2. 571/2" standard wheel diameter x 1203 = 58.9" diameter.
- 3. The maximum safe speed of a Size 574 Series 30 GI Fan with RIM wheel is 1325 RPM. 1175 ÷ 1325 = 88.7%. Thus, the direct-drive speed is less than 95% of the maximum safe speed, making this a valid larger-than-standard-diameter fan selection.
- 4. Select a 574 Arrangement 8 Series 30 GI Fan with special 58.9" diameter RIM wheel direct-connected to an 1175 RPM motor to deliver 29,650 CFM at 26" SP, 189 BHP. The application should be checked by the Willowbrook office to deter-mine if a split housing is necessary to install and remove the fan wheel.

NARROW-WIDTH CONSTRUCTION FOR GI FANS WITH LS AND RIM WHEELS

In order to broaden the available performance range of direct-drive Arrangement 8 Fans, special-width LS/RIM wheel construction is offered in Sizes 194 through 854. Special-width construction on direct-drive fans provides a change of CFM for a constant SP at given motor speeds. Narrow-width construction is limited to 30% (70% reduction). Housing widths are narrowed by the reduction in wheel-blade width in all cases.

Fan performance with narrow-width wheel	Stone	Example:						
construction can be determined as follows:	Steps	A fan is required to handle 7112 CFM @ 18" SP.						
Select a fan based on the required SP and RPM		A 334 Series 20 GI Fan with LS wheel is						
(motor speed) with CFM equal to or greater	1	selected for 7112 CFM at 18" SP to be direct-						
than the required CFM.		connected to a 1770 RPM motor.						
Determine full-width CFM, OV and BHP at the		The 334 Series 20 GI Fan with LS wheel						
desired RPM and SP from the capacity tables.	2	will deliver 7486 CFM at 3800 OV at 35.7						
		BHP at 18" SP at 1771 RPM.						
Divide the desired CFM by the full-width CFM	2	The performance factor $= 7112/186 = 0.95$						
found in Step 2 to determine a performance factor.	3	The periormance factor = $7.12/400 = 0.95$.						
The full-width BHP will be reduced by the	Λ	The new $PHP = 25.7 \times 0.05 = 22.0 PHP$						
performance factor calculated in Step 3.	4	The new DITE = $33.7 \times 0.93 = 33.9$ DITE.						
Based on the outlet velocity found in Step 2,		For 3800 OV, the BP is 0.90. At 18" SP,						
refer to Chart 1 to determine BP (velocity	5	VP/SP = 0.90 ÷ 18 = 0.05.						
pressure). Divide BP by the required SP	5							
to determine VP/SP.								
From Chart 4, determine the required blade-		From Chart 4, the blade-width percentage = 91%.						
width percentage by establishing the point of								
intersection between the performance factor	6							
from Step 3 and the BP/SP from Step 5								
interpolate if necessary.								
The effective-blade width must be reduced		Effective blade width = 133/8" x 0.91 = 121/8".						
to the percentage found in Step 6, and the		Housing-width reduction = 133/8" - 121/8" = 11/4".						
housing must be reduced by the same	7	New housing-width = 155/8" - 11/4" = 143/8".						
number of inches as the effective-blade width								
refer to Chart 3.								
A new outlet velocity must be determined:		To determine the new outlet velocity:						
New outlet area equals new housing width	0	A. New outlet area = (143/8 ÷ 155/8) x 1.97 = 1.81 sq. ft.						
divided by full housing width times outlet area	0	B. New OV = 7112 CFM ÷ 1.81 = 3929 FPM.						
shown in Chart 3.								

NOTE: The order write-up should indicate performance and percent width only.

CHART 3 Full Width Dimensions

	Blad	e Width	Housing "M"	Outlet Area							
Size	(in	ches)	Dimension	(Square Feet)							
	Series 20	Series 30 & 45*	(inches)	Series 20	Series 30	Series 45					
144	65/8	NA	77/8	0.45	NA	NA					
174	8	NA	91/2	0.67	NA	NA					
194	81/4	81/4	93/4	0.69	0.64	0.64					
224	93/16	93/16	103/4	0.93	0.91	0.91					
264	109/16	109/16	123/8	1.24	1.21	1.21					
294	12	12	14	1.59	1.56	1.54					
334	133/8	133/8	155/8	1.97	1.95	1.92					
364	1413/16	14 13/16	17 1/4	2.41	2.39	2.35					
404	16	151/2	19	2.90	2.90	2.86					
454	18	171/2	213/8	3.69	3.69	3.64					
504	201/16	199/16	237/8	4.62	4.57	4.57					
574	223/4	221/4	271/8	5.99	5.93	5.93					
644	257/16	2415/16	301/2	7.51	7.48	7.48					
714	281/8	275/8	335/8	9.20	9.17	9.17					
784	3011/16	303/16	367/8	11.1	11.06	11.06					
854	331/2	33	401/8	13.17	13.13	13.13					

* Blade width dimensions are for LS in Sizes 194 through 364 and RIM in Sizes 404 through 854.

NA - Not Available

CHART 4 Percent-Width Factors For GI Wheels

							LSV	Vheel								_
VP/		Performance Factors														
SP	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	
Up to .03	*	*	*	*	75	75	76	77	78	79	81	83	86	91	100	п
0.06	47	48	49	51	54	57	61	66	72	77	80	83	86	91	100	Bla
0.08	41	42	44	47	51	55	60	66	71	76	80	83	87	92	100	de
0.1	34	36	39	43	48	53	58	64	70	75	80	83	87	92	100	N
0.15		32	36	40	44	48	53	59	66	72	77	80	85	92	100	dtl
0.25			32	37	42	47	52	57	62	67	73	79	85	92	100	h %
.40 & Over			31	36	40	45	50	55	60	65	71	77	83	91	100	6

							RIM	Wheel								_
VP/		Performance Factors														
SP	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	
Up to .03	*	*	*	*	75	75	75	76	77	78	80	83	86	91	100	
0.06	34	36	39	42	46	52	59	65	70	75	78	81	84	91	100	
0.08	31	35	38	41	45	49	53	58	64	71	77	81	85	92	100	
0.1	30	33	37	40	44	48	52	57	62	68	75	80	85	92	100	
0.15		32	36	40	44	48	52	57	62	68	73	79	86	93	100	
0.25		30	33	38	42	47	51	56	61	67	73	79	86	93	100	
.40 & Over			30	35	40	45	50	55	61	67	73	79	86	93	100	

* At VP/SP less than .06, SP decreases with width . . . therefore, narrow-width construction is not recommended.

Form 607 GAW